AE 16: Drawing maps with {ggmap}

Suggested answers

Application exercise
Answers
Modified

March 25, 2025

Packages

library(tidyverse)
library(ggmap)
library(colorspace)

# set default theme
theme_set(theme_minimal())

Load NYC 311 reports

Let’s first load a subset of 311 service requests in New York City.1

# load data
nyc_311 <- read_csv(file = "data/nyc-311.csv")
Rows: 43323 Columns: 6
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (2): complaint_type, borough
dbl  (3): unique_key, latitude, longitude
dttm (1): created_date

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(nyc_311)
Rows: 43,323
Columns: 6
$ unique_key     <dbl> 44118718, 44144807, 44153542, 44156435, 44160451, 44170…
$ created_date   <dttm> 2019-10-22 11:44:38, 2019-10-25 19:58:29, 2019-10-26 1…
$ complaint_type <chr> "Food Poisoning", "Food Poisoning", "Food Poisoning", "…
$ borough        <chr> "QUEENS", "QUEENS", "BROOKLYN", "MANHATTAN", "BROOKLYN"…
$ latitude       <dbl> 40.71226, 40.75848, 40.66921, 40.72604, 40.70665, 40.78…
$ longitude      <dbl> -73.88848, -73.82961, -73.86451, -73.98955, -73.92297, …

This subset includes 311 service requests related to Food Poisoning in commercial establishments (e.g. restaurants, cafeterias, food carts).

Register a Stadia Maps API Key

Your turn: Store your Stadia Maps API key using the function

register_stadiamaps(key = "YOUR-API-KEY", write = TRUE)

replacing "YOUR-API-KEY" with your actual API key. Otherwise you will not be able to obtain map tiles and complete the application exercise.

Obtain map tiles for New York City

Your turn: Use bboxfinder.com to find bounding box coordinates for New York City. Then, use get_stamenmap() to obtain map tiles for New York City and visualize the map.

Note

I recommend a zoom level of 11.

# store bounding box coordinates
nyc_bb <- c(
  left = -74.263045,
  bottom = 40.487652,
  right = -73.675963,
  top = 40.934743
)

nyc <- get_stadiamap(
  bbox = nyc_bb,
  zoom = 11
)
ℹ © Stadia Maps © Stamen Design © OpenMapTiles © OpenStreetMap contributors.
# plot the raster map
ggmap(nyc)

Food poisoning rates

A video clip from the TV show 'Parks and Recreation' where a character is in a hospital gown and saying to himself in a mirror 'Stop. Pooping.'

The COVID-19 pandemic caused massive disruption in the restaurant industry. Due to social distancing measures and lockdowns, restaurant traffic decreased significantly.

While this had significant financial ramifications, one potentially overlooked consequence is the impact on food poisoning rates. With fewer people eating out, the number of food poisoning complaints may have decreased.

Your turn: Visualize the geospatial distribution of complaints related to food poisoning in NYC in March, April, and May over a six-year time period (2018-23). Construct the chart in such a way that you can make valid comparisons over time and geographically. What impact did COVID-19 have on food poisoning cases in NYC? Did it vary geographically?

nyc_covid_food_poison <- nyc_311 |>
  # generate a year variable
  mutate(year = year(created_date)) |>
  # only keep reports in March, April, and May from 2018-23
  filter(month(created_date) %in% 3:5, year %in% 2018:2023)

ggmap(nyc) +
  # add the heatmap
  stat_density_2d(
    data = nyc_covid_food_poison,
    mapping = aes(
      x = longitude,
      y = latitude,
      fill = after_stat(level)
    ),
    alpha = .1,
    bins = 50,
    geom = "polygon"
  ) +
  scale_fill_viridis_c() +
  facet_wrap(facets = vars(year))
Warning: Removed 39 rows containing non-finite outside the scale range
(`stat_density2d()`).

Your turn: Now visualize the change in food complaints over time without making a map. How else could you represent this data? Does making it a map improve the understanding of the data, or add more confusion?

# do we need a map?
nyc_311 |>
  # generate a year variable
  mutate(year = year(created_date)) |>
  filter(month(created_date) %in% 3:5, year < 2025) |>
  count(year) |>
  ggplot(mapping = aes(x = year, y = n)) +
  geom_line() +
  geom_point() +
  labs(
    x = NULL,
    y = NULL,
    title = "Food poisoning complaints in NYC dropped during COVID-19",
    subtitle = "311 complaints recorded in March, April, and May",
    caption = "Source: NYC Open Data"
  )

# by borough
nyc_311 |>
  # generate a year variable
  mutate(year = year(created_date)) |>
  filter(month(created_date) %in% 3:5, year < 2025) |>
  # count number of cases by borough and year
  count(borough, year) |>
  # remove NAs and Unspecified locations
  drop_na() |>
  filter(borough != "Unspecified") |>
  # order the boroughs meaningfully for the guide
  mutate(borough = borough |>
           str_to_title() |>
           fct_reorder2(.x = year, .y = n)) |>
  ggplot(mapping = aes(x = year, y = n, color = borough)) +
  geom_line() +
  geom_point() +
  scale_color_discrete_qualitative() +
  labs(
    x = NULL,
    y = NULL,
    color = NULL,
    title = "Food poisoning complaints in NYC dropped during COVID-19",
    subtitle = "311 complaints recorded in March, April, and May",
    caption = "Source: NYC Open Data"
  )

Visualize food poisoning complaints on Roosevelt Island

Your turn: Now focus on food poisoning complaints on or around Roosevelt Island.2 Use get_stamenmap() to obtain map tiles for the Roosevelt Island region and overlay with the food poisoning complaints. What type of chart is more effective for this task?

Tips and extensions
  • Consider adjusting your zoom for this geographic region.
  • Try a different set of map tiles. Which one looks both interpretable as well as aesthetically pleasing?
# Obtain map tiles for Roosevelt Island
roosevelt_bb <- c(
  left = -73.967121,
  bottom = 40.748700,
  right = -73.937080,
  top = 40.774704
)
roosevelt <- get_stadiamap(
  bbox = roosevelt_bb,
  zoom = 14,
  maptype = "stamen_watercolor"
)
ℹ © Stadia Maps © Stamen Design © OpenMapTiles © OpenStreetMap contributors.
# Generate a scatterplot of food poisoning complaints
ggmap(roosevelt) +
  # add a scatterplot layer
  geom_point(
    data = nyc_311,
    mapping = aes(
      x = longitude,
      y = latitude
    ),
    alpha = 0.5
  )
Warning: Removed 42271 rows containing missing values or values outside the scale range
(`geom_point()`).

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.4.2 (2024-10-31)
 os       macOS Sonoma 14.6.1
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/New_York
 date     2025-03-26
 pandoc   3.4 @ /usr/local/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package      * version    date (UTC) lib source
 archive        1.1.9      2024-09-12 [1] CRAN (R 4.4.1)
 bit            4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bit64          4.0.5      2020-08-30 [1] CRAN (R 4.3.0)
 bitops         1.0-7      2021-04-24 [1] CRAN (R 4.3.0)
 cli            3.6.3      2024-06-21 [1] CRAN (R 4.4.0)
 colorspace   * 2.1-1      2024-07-26 [1] CRAN (R 4.4.0)
 crayon         1.5.3      2024-06-20 [1] CRAN (R 4.4.0)
 curl           6.2.1      2025-02-19 [1] RSPM
 dichromat      2.0-0.1    2022-05-02 [1] CRAN (R 4.3.0)
 digest         0.6.37     2024-08-19 [1] CRAN (R 4.4.1)
 dplyr        * 1.1.4      2023-11-17 [1] CRAN (R 4.3.1)
 evaluate       1.0.3      2025-01-10 [1] CRAN (R 4.4.1)
 farver         2.1.2      2024-05-13 [1] CRAN (R 4.3.3)
 fastmap        1.2.0      2024-05-15 [1] CRAN (R 4.4.0)
 forcats      * 1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 generics       0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 ggmap        * 4.0.0      2024-01-09 [1] Github (stadiamaps/ggmap@dbbca88)
 ggplot2      * 3.5.1      2024-04-23 [1] CRAN (R 4.3.1)
 glue           1.8.0      2024-09-30 [1] CRAN (R 4.4.1)
 gtable         0.3.6      2024-10-25 [1] CRAN (R 4.4.1)
 here           1.0.1      2020-12-13 [1] CRAN (R 4.3.0)
 hms            1.1.3      2023-03-21 [1] CRAN (R 4.3.0)
 htmltools      0.5.8.1    2024-04-04 [1] CRAN (R 4.3.1)
 htmlwidgets    1.6.4      2023-12-06 [1] CRAN (R 4.3.1)
 httr           1.4.7      2023-08-15 [1] CRAN (R 4.3.0)
 isoband        0.2.7      2022-12-20 [1] CRAN (R 4.3.0)
 jpeg           0.1-10     2022-11-29 [1] CRAN (R 4.3.0)
 jsonlite       1.8.9      2024-09-20 [1] CRAN (R 4.4.1)
 knitr          1.49       2024-11-08 [1] CRAN (R 4.4.1)
 labeling       0.4.3      2023-08-29 [1] CRAN (R 4.3.0)
 lifecycle      1.0.4      2023-11-07 [1] CRAN (R 4.3.1)
 lubridate    * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS           7.3-61     2024-06-13 [1] CRAN (R 4.4.2)
 pillar         1.10.1     2025-01-07 [1] CRAN (R 4.4.1)
 pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 plyr           1.8.9      2023-10-02 [1] CRAN (R 4.3.1)
 png            0.1-8      2022-11-29 [1] CRAN (R 4.3.0)
 purrr        * 1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6             2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 RColorBrewer   1.1-3      2022-04-03 [1] CRAN (R 4.3.0)
 Rcpp           1.0.14     2025-01-12 [1] CRAN (R 4.4.1)
 readr        * 2.1.5      2024-01-10 [1] CRAN (R 4.3.1)
 rlang          1.1.5      2025-01-17 [1] CRAN (R 4.4.1)
 rmarkdown      2.29       2024-11-04 [1] CRAN (R 4.4.1)
 rprojroot      2.0.4      2023-11-05 [1] CRAN (R 4.3.1)
 scales         1.3.0.9000 2025-03-19 [1] Github (bensoltoff/scales@71d8f13)
 sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 stringi        1.8.4      2024-05-06 [1] CRAN (R 4.3.1)
 stringr      * 1.5.1      2023-11-14 [1] CRAN (R 4.3.1)
 tibble       * 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidyr        * 1.3.1      2024-01-24 [1] CRAN (R 4.3.1)
 tidyselect     1.2.1      2024-03-11 [1] CRAN (R 4.3.1)
 tidyverse    * 2.0.0      2023-02-22 [1] CRAN (R 4.3.0)
 timechange     0.3.0      2024-01-18 [1] CRAN (R 4.3.1)
 tzdb           0.4.0      2023-05-12 [1] CRAN (R 4.3.0)
 vctrs          0.6.5      2023-12-01 [1] CRAN (R 4.3.1)
 viridisLite    0.4.2      2023-05-02 [1] CRAN (R 4.3.0)
 vroom          1.6.5      2023-12-05 [1] CRAN (R 4.3.1)
 withr          3.0.2      2024-10-28 [1] CRAN (R 4.4.1)
 xfun           0.50.5     2025-01-15 [1] https://yihui.r-universe.dev (R 4.4.2)
 yaml           2.3.10     2024-07-26 [1] CRAN (R 4.4.0)

 [1] /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────

Footnotes

  1. These reports were obtained from the NYC Open Data portal API.↩︎

  2. Also the location of Cornell Tech.↩︎