Lecture 17
Cornell University
INFO 3312/5312 - Spring 2025
March 25, 2025
Source: Aaron Rothberg
Properties of projection methods
Use bboxfinder.com to determine the exact longitude/latitude coordinates for the bounding box you wish to obtain.
Rows: 256,797
Columns: 7
$ cmplnt_num <chr> "247350382", "243724728", "246348713", "240025455", "2461…
$ boro_nm <chr> "BROOKLYN", "QUEENS", "QUEENS", "BROOKLYN", "BRONX", "BRO…
$ cmplnt_fr_dt <dttm> 1011-05-18 04:56:02, 1022-04-11 04:56:02, 1022-06-08 04:…
$ law_cat_cd <chr> "MISDEMEANOR", "MISDEMEANOR", "MISDEMEANOR", "FELONY", "F…
$ ofns_desc <chr> "CRIMINAL MISCHIEF & RELATED OF", "PETIT LARCENY", "PETIT…
$ latitude <dbl> 40.66904, 40.77080, 40.68766, 40.65421, 40.83448, 40.6973…
$ longitude <dbl> -73.90619, -73.81115, -73.83406, -73.95957, -73.85637, -7…
geom_point()
geom_point()
geom_density_2d()
stat_density_2d()
stat_density_2d()
ggmap(nyc) +
stat_density_2d(
data = crimes |>
filter(ofns_desc %in% c(
"DANGEROUS DRUGS",
"GRAND LARCENY OF MOTOR VEHICLE",
"ROBBERY",
"VEHICLE AND TRAFFIC LAWS"
)),
aes(
x = longitude,
y = latitude,
fill = after_stat(level)
),
alpha = .4,
bins = 10,
geom = "polygon"
) +
facet_wrap(facets = vars(ofns_desc))
ae-16
Instructions
ae-16
(repo name will be suffixed with your GitHub name).renv::restore()
to install the required packages, open the Quarto document in the repo, and follow along and complete the exercises.ggplot(data = excess_deaths, mapping = aes(x = week_ending_date, y = excess_covid)) +
geom_area() +
facet_geo(facets = vars(state)) +
scale_y_continuous(
labels = label_percent(scale = 1)
) +
scale_x_date(breaks = c(ymd("2020-01-01", "2021-01-01", "2022-01-01")), labels = c("'20", "'21", "'22")) +
labs(
x = NULL, y = NULL,
title = "Excess deaths associated with COVID-19",
subtitle = "Percentage of deaths that are estimated to be related to COVID-19",
caption = "Source: CDC"
) +
theme(
strip.text.x = element_text(size = 7),
axis.text = element_text(size = 8),
plot.title.position = "plot"
)
excess_deaths <- read_csv(file = "data/Excess_Deaths_Associated_with_COVID-19.csv") |>
janitor::clean_names() |>
filter(type == "Predicted (weighted)") |>
mutate(outcome = if_else(outcome == "All causes", "all", "no_covid")) |>
select(week_ending_date, state, outcome, percent_excess_estimate) |>
pivot_wider(names_from = outcome, values_from = percent_excess_estimate) |>
mutate(excess_covid = all - no_covid) |>
filter(between(week_ending_date, as.Date("2020-01-01"), as.Date("2021-12-31")))
glimpse(excess_deaths)
Rows: 5,616
Columns: 5
$ week_ending_date <date> 2020-01-04, 2020-01-11, 2020-01-18, 2020-01-25, 2020…
$ state <chr> "Alabama", "Alabama", "Alabama", "Alabama", "Alabama"…
$ all <dbl> 0.0000000, 0.5354003, 0.0000000, 0.0000000, 0.0000000…
$ no_covid <dbl> 0.0000000, 0.5354003, 0.0000000, 0.0000000, 0.0000000…
$ excess_covid <dbl> 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.000…
Source: https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm
Using geofacet::facet_geo()
:
ggplot(
data = excess_deaths,
mapping = aes(
x = week_ending_date,
y = excess_covid,
group = state
)
) +
geom_area() +
facet_geo(facets = vars(state)) +
labs(
x = NULL, y = NULL,
title = "Excess deaths associated with COVID-19",
subtitle = "Percentage of deaths that are estimated to be related to COVID-19",
caption = "Source: CDC"
)
ggplot(data = excess_deaths, mapping = aes(x = week_ending_date, y = excess_covid)) +
geom_area() +
facet_geo(facets = vars(state)) +
scale_y_continuous(
labels = label_percent(scale = 1)
) +
scale_x_date(breaks = c(ymd("2020-01-01", "2021-01-01", "2022-01-01")), labels = c("'20", "'21", "'22")) +
labs(
x = NULL, y = NULL,
title = "Excess deaths associated with COVID-19",
subtitle = "Percentage of deaths that are estimated to be related to COVID-19",
caption = "Source: CDC"
) +
theme(
strip.text.x = element_text(size = 7),
axis.text = element_text(size = 8),
plot.title.position = "plot"
)
# A tibble: 51 × 5
state electoal_votes biden trump win
<chr> <dbl> <dbl> <dbl> <chr>
1 Alabama 9 0 9 Republican
2 Alaska 3 0 3 Republican
3 Arizona 11 11 0 Democrat
4 Arkansas 6 0 6 Republican
5 California 55 55 0 Democrat
6 Colorado 9 9 0 Democrat
7 Connecticut 7 7 0 Democrat
8 Delaware 3 3 0 Democrat
9 District of Columbia 3 3 0 Democrat
10 Florida 29 0 29 Republican
# ℹ 41 more rows
excess_deaths |>
left_join(y = election_2020) |>
ggplot(
mapping = aes(
x = week_ending_date,
y = excess_covid
)
) +
geom_area(mapping = aes(fill = win)) +
facet_geo(facets = vars(state)) +
scale_y_continuous(
labels = label_percent(scale = 1)
) +
scale_x_date(breaks = c(ymd("2020-01-01", "2021-01-01", "2022-01-01")), labels = c("'20", "'21", "'22")) +
scale_fill_manual(values = c("#2D69A1", "#BD3028"), guide = guide_legend(position = "inside")) +
labs(
x = NULL, y = NULL,
title = "Excess deaths associated with COVID-19",
subtitle = "Percentage of deaths that are estimated to be related to COVID-19",
caption = "Source: CDC",
fill = "2020 Presidential\nElection"
) +
theme(
strip.text.x = element_text(size = 7),
axis.text = element_text(size = 8),
plot.title.position = "plot",
legend.position.inside = c(0.93, 0.15),
legend.text = element_text(size = 9),
legend.title = element_text(size = 11),
legend.background = element_rect(color = "gray", size = 0.5)
)